1 закон термодинамики изохорный процесс

1 закон термодинамики изохорный процесс

Луканин В

2.1. Термодинамические процессы с идеальным газом
2.1.1. Политропный процесс
2.1.2. Изоэнтропный и изотермный процессы
2.1.3. Изобарный и изохорный процессы
2.1.4. Исследование политропных процессов
2.2. Термодинамические процессы с водяным паром
2.2.1. Исходные положения
2.2.2. Термодинамический анализ процессов производства водяного пара
2.2.3. Диаграмма sh для водяного пара. Основные процессы с водяным паром
2.3. Необратимые термодинамические процессы
2.4. Термодинамические процессы с внутренними источниками (стоками) теплоты
2.4.1. Исходные положения
2.4.2. Политропные процессы с источником теплоты
2.4.3. Изменение средней по цилиндру температуры заряда в дизеле

4.1. Понятие о круговом процессе (цикле). Прямые и обратные циклы
4.2. Циклы поршневых двигателей внутреннего сгорания
4.3. Циклы газотурбинных двигателей
4.3.1. Цикл ГТД с подводом теплоты при постоянном давлении
4.3.2. Цикл ГТД с подводом теплоты при постоянном объеме
4.3.3. Цикл ГТД с регенерацией теплоты
4.3.4. Приближение цикла ГТД к обобщенному циклу Карно
4.4. Циклы реактивных двигателей
4.4.1. Воздушно-реактивные двигатели
4.4.2. Ракетные двигатели
4.4.3. Тяга реактивных двигателей
4.5. Циклы паросиловых установок
4.5.1. Цикл Карно
4.5.2. Цикл Ренкина
4.5.3. Регенеративный цикл
4.5.4. Теплофикационный цикл
4.6. Обратные циклы тепловых машин
4.7. Цикл Стирлинга
4.8. Компрессоры
4.8.1. Идеальный поршневой компрессор
4.8.2. Многоступенчатый поршневой компрессор
4.8.3. Работа реального поршневого компрессора
4.8.4. Лопаточные компрессоры
4.9. Утилизация теплоты

3.1. Параметры газа в потоке и при его торможении
3.2. Уравнение первого закона термодинамики
3.3. Сопла и диффузоры
3.3.1. Скорость и массовый расход газа
3.3.2. Скорость звука
3.3.3. Критические параметры газового потока
3.3.4. Форма каналов сопл и диффузоров
3.3.5. Истечение газа через суживающееся сопло
3.3.6. Истечение газа через сопло Лаваля
3.3.7. Истечение газа с учетом трения
3.3.8. Истечение водяного пара
3.4. Дросселирование газов и паров
3.5. Эжектирование

10.1. Теплообмен при внешнем обтекании тел
10.11. Теплообмен при обтекании плоской поверхности
10.12. Теплообмен при поперечном обтекании одиночного цилиндра
10.1.3. Обтекание пучка труб
10.1.4. Теплообмен при обтекании шара
10.2. Теплообмен при внутреннем течении в трубах и каналах
10.2.1. Теплообмен при ламинарном течении
10.2.2. Теплообмен при турбулентном течении
10.3. Теплообмен при свободной конвекции
10.4. Теплообмен при течении жидкости через пористую стенку
10.4.1. Тепловой поток и температурное поле в жидкости, движущейся через пористую стенку
10.4.2. Тепловой поток и температурное поле в жидкости, движущейся между двумя пористыми поверхностями
10.5. Теплообмен при кипении
10.5.1. Физические процессы при кипении
10.5.2. Теплообмен при пузырьковом кипении
10.5.3. Теплообмен при пленочном кипении
10.6. Теплообмен при конденсации

7.1. Уравнения гидродинамики
7.1.1. Движение вязкой жидкости
7.1.2. Уравнение неразрывности
7.2. Особенности процессов переноса в турбулентном потоке
7.2.1. Характеристики турбулентного движения
7.2.2. Уравнения сохранения для турбулентного движения
7.3. Использование теории подобия для расчета процессов переноса теплоты и вещества
7.3.1. Основные положения теории подобия
7.3.2. Критериальные уравнения
7.4. Уравнения пограничного слоя
7.4.1. Гидродинамический пограничный слой
7.4.2. Тепловой пограничный слой

ЧАСТЬ III. ЭНЕРГЕТИЧЕСКИЕ И ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ ТЕПЛОТЫ

Глава 7. Основные положения теории конвективного переноса

13.1. Типы теплообменных аппаратов
13.2. Теплопередача в рекуперативных теплообменниках
13.21. Изменение температуры теплоносителей. Температурный напор
13.22. Определение среднего температурного напора
13.3. Теплопередача в регенеративных теплообменниках
13.3.1. Общие сведения
13.3.2. Приближенный расчет вращающегося регенератора

Формулы по физике для ЕГЭ и 7-11 класса

X=X0+υ0∙t+(a∙t 2 )/2 S= (υ 2 —υ0 2 ) /2а S= (υ+υ0) ∙t /2

  1. Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=Uзе
  2. Красная граница фотоэффекта νк = Aвых/h
  3. Импульс фотона P=mc=h/ λ=Е/с

Для начала картинка, которую можно распечатать в компактном виде.

  1. Закон преломления света n21=n2/n1= υ1/ υ2
  2. Показатель преломления n21=sin α/sin γ
  3. Формула тонкой линзы 1/F=1/d + 1/f
  4. Оптическая сила линзы D=1/F
  5. max интерференции: Δd=kλ,
  6. min интерференции: Δd=(2k+1)λ/2
  7. Диф.решетка d∙sin φ=k λ
  1. Уравнение скорости при равноускоренном движении υ=υ0+a∙t
  2. Ускорение a=(υυ0)/t
  3. Скорость при движении по окружности υ=2πR/Т
  4. Центростремительное ускорение a=υ 2 /R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона F=ma
  7. Закон Гука Fy=-kx
  8. Закон Всемирного тяготения F=G∙M∙m/R 2
  9. Вес тела, движущегося с ускорением а↑ Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓ Р=m(g-a)
  11. Сила трения Fтр=µN
  12. Импульс тела p=mυ
  13. Импульс силы Ft=∆p
  14. Момент силы M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx 2 /2
  17. Кинетическая энергия тела Ek=mυ 2 /2
  18. Работа A=F∙S∙cosα
  19. Мощность N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υТ
  1. Количество вещества ν=N/ Na
  2. Молярная масса М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ P=nkT=1/3nm0υ 2
  5. Закон Гей – Люссака (изобарный процесс) V/T =const
  6. Закон Шарля (изохорный процесс) P/T =const
  7. Относительная влажность φ=P/P0∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс) PV=const
  11. Количество теплоты при нагревании Q=Cm(T2-T1)
  12. Количество теплоты при плавлении Q=λm
  13. Количество теплоты при парообразовании Q=Lm
  14. Количество теплоты при сгорании топлива Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики ΔU=A+Q
  17. КПД тепловых двигателей η= (Q1 — Q2)/ Q1
  18. КПД идеал. двигателей (цикл Карно) η= (Т1 — Т2)/ Т1
  1. Давление Р=F/S
  2. Плотность ρ=m/V
  3. Давление на глубине жидкости P=ρ∙g∙h
  4. Сила тяжести Fт=mg
  5. 5. Архимедова сила Fa=ρж∙g∙Vт
  6. Уравнение движения при равноускоренном движении

и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

Основные классы неорганических соединений, номенклатура

4. Закон Авогадро. Установлен итальянским физиком Авогадро в 1811 г. Одинаковые объемы любых газов, отобранные при одной температуре и одинаковом давлении, содержат одно и тоже число молекул. Таким образом, можно сформулировать понятие количества вещества: 1 моль вещества содержит число частиц, равное 6,02*10 23 (называемое постоянной Авогадро) или содержит столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12г изотопа углерода 12 С. Следствием этого закона является то, что 1 моль любого газа занимает при нормальных условиях (Р0 =101,3кПа и Т0=298К) объём, равный 22,4л.

2. Закон кратных отношений. Установлен Дальтоном в 1803г. В случае, когда два элемента образуют между собой несколько химических соединений, тогда имеет место отношение массы одного из элементов, приходящееся в этих соединениях на одну и ту же массу другого, как небольших целых чисел. Таким образом, элементы способны входить в состав соединений только в определенных пропорциях. Открытие этого закона явилось подтверждением атомной теории строения вещества. Только теперь идеи М.В. Ломоносова о строении вещества получили опытное подтверждение, и разработка атомно-молекулярного учения получила своё дальнейшее развитие.

Большую роль в установлении сложной природы атома и расшифровке его структуры сыграло открытие и изучение радиоактивности (явление испускания некоторыми элементами излучения, способного проникать через вещества, ионизировать воздух, вызывать засвечивание фотографических пластинок). Впервые в 1896г. радиоактивность обнаружена А. Беккерелем у соединений урана. Мария и Пьер Склодовские-Кюри обнаружили радиоактивность и у соединений тория, а в 1898 г. они открыли в составе урановых руд присутствие двух новых радиоактивных элементов – полония и радия. Опыты супругов Кюри показали, что атомы радия в процессе радиоактивного излучения распадаются, превращаясь в атомы других элементов, в частности, в атомы гелия. Впоследствии было установлено, что другим продуктом распада радия является инертный газ радон.

HCN – одноосновная кислота, H2SO3 – двухосновная кислота, H3РO4 – трехосновная кислота. Важнейшим свойством кислот является их способность образовывать соли с основаниями. Названия кислот образуют от того элемента, которым образована кислота, при этом названия бескислородных кислот оканчивается словом водород (HCN –циановодород или синильная кислота). Названия кислородсодержащих кислот образуют от того элемента, которым образована кислота, с добавлением слова кислота (H3AsO4 – мышьяковая кислота, H2CrO4 – хромовая кислота). В случаях, когда один элемент образует несколько кислот различие между кислотами проявляют в окончаниях названий (на ная или овая оканчиваются названия тех кислот, в которых элемент проявляет наивысшую валентность; на истая или овистая оканчиваются названия тех кислот, в которых элемент проявляет валентность ниже максимальной).

Эквивалент кислоты равен: Эм= , где: М – мольная масса кислоты; х – основность кислоты.

Атом любого элемента состоит из положительно заряженного ядра и отрицательно заряженных электронов, в целом же атом – система электронейтральная. Атомное ядро состоит из нуклонов: протонов (заряд +1, массовое число 1) и нейтронов (заряд 0, массовое число 1). Заряд ядра, равный порядковому номеру элемента в таблице Д.И. Менделеева, совпадает с числом протонов: массовое число ядра равно суммарному количеству протонов и нейтронов. У одного элемента возможно существование атомов с различным массовым числом ядер – изотопов, т.е. атомов с различным числом нейтронов и одинаковым числом протонов.

Примеры: NaHS, KHCO3 – кислые соли (гидросульфид натрия и гидрокарбонат натрия); MgOHCl, CaOHCl – основные соли (хлориды гидроксо магния и кальция); NaCl, CuS – нормальные соли (хлорид натрия и сульфид меди).

Лекция №2: Основные законы общей химии. Стехиометрия. Химический эквивалент.

Презентации по физике для 10 класса

Закон сохранения заряда. Что изучает электродинамика. Электродинамика. Строение атома. Ион. Пылинки притягиваются к натертому янтарю. Электризация. Закон сохранения электрического заряда. Электризация через влияние. Электрический заряд. Обозначение. Модуль заряда. Два рода зарядов. Приборы для обнаружения заряда. Существование наименьшего электрического заряда. Электрон. Опыт Иоффе-Милликена. Делимость заряда. Алгебраическая сумма зарядов. Заряженная капля. Соприкосновение заряженных шариков. Заряженные тела. Перенос заряда. Электрометр. Закон Кулона. Домашнее задание. — Закон сохранения электрического заряда.pptx

Современные заменители топлива. Наше настоящее. Цель исследований. Задачи исследований. Гипотеза. Альтернативные виды топлива. Спирт. Водород. Биотопливо. Электроэнергия. Солнечная энергия. Сжатый воздух. Виды топлива. Обработка результатов опроса. Наше предложение по проблеме. Процесс переработки мусора. Выводы. — Альтернативные виды топлива.ppt

С уважением к энергосбережению. Энергопотребление. Энергопотребление и его последствия. Энергетические проблемы человечества. Рациональное использование энергии. Анализ потребления топливно-энергетических ресурсов. Проблема разумного использования энергии. Умное потребление. Цветной телевизор. Кран. Анкета. Холодильник. Работа в творческих мастерских. Экономические задачи. Заседание дискуссионного клуба. Светофоры. Огромные потери тепла. Подведение итогов. Повышение энергоэффективности. Программа повышения энергетической эффективности. Энергосбережение. Щели в оконных рамах. — Программа энергосбережения.pptx

Основы термодинамики. Знания. Основные формулы. Количество теплоты. КПД тепловых двигателей. Гелий. Внутренняя энергия. Аэростат. График зависимости. Идеальный газ. Задача. Температура. Уравнение теплового баланса. Водяной пар. Выражение. Внутренняя энергия газа. Газ. Количество вещества. Работа газа. Изотермическое сжатие. Тепловой двигатель. Идеальная тепловая машина. КПД. Дизельное топливо. Желаю успеха. Литература. — Задачи по термодинамике.ppt

по теме: «Основы термодинамики». Относительная влажность воздуха равна 10% 20% 30% 40%. Б. зависимость давления столба жидкости от глубины. В сосуде неизменного объема находится идеальный газ в количестве 2 моль. На графике показана зависимость давления одноатомного идеального газа от объема. Газ совершает работу, равную 3 кДж. Количество теплоты, полученное газом при переходе из состояния 1 в состояние 2, равно. Повторить раздел: «Основы термодинамики». Подготовить доклады, рефераты, презентации на тему: «Основы термодинамики». Контрольная работа по теме : « Ядерная физика». 11 класс. — Тест «Термодинамика».pptm

Электрический ток в металлах. Проверка домашнего задания. Термоэлектричество. Электрическая проводимость. Упорядоченное движение. Опыты Толмена и Стюарта. Электроны. Электрический ток в жидкостях. Явление электролиза. Закон электролиза. Носители заряда в электролитах. Зависимость сопротивления проводника от температуры. Сверхпроводимость. Что представляет собой электрический ток. Решение задач. Итоговый контроль знаний. Взаимопроверка. Подведение итогов занятия. — Ток в металлах и электролитах.ppt

Гармонические колебания. Цели урока. Проверка домашней работы. Гармонические колебания точки. Гармонические колебания точки. Гармонические колебания точки. Гармонические колебания точки. Записать уравнение функции по графику, изображенному на рисунке. Найти область значений и период функции. Лобачевский. Уравнение гармонических колебаний. Движения, которые точно или почти точно повторяются. Условия возникновения свободных колебаний. Периодические изменения физической величины. Xm – модуль максимального смещения точки от положения равновесия. Число колебаний в единицу времени называется частотой;. — Гармонические колебания точки.ppt

Сила тяжести. Что называется силой тяготения. Проявления закона всемирного тяготения. Различные тела. Движение тела. Виды движения. Вес тела. Сила реакции опоры. Вес тела, движущегося с ускорением. Вес тела, движущегося с ускорением. Сила упругости. Деформация растяжения. Как возникает сила упругости. Закон Гука. Особенности сил упругости. Сравнение сил. Что называется невесомостью. Сила. Жесткость пружины. Домашнее задание. — Сила тяжести и вес тела.pptx


Комментарии запрещены.